EconPapers    
Economics at your fingertips  
 

Comparative analysis of bent and basic winglets on performance improvement of horizontal axis wind turbines

Zhihao Zhang, Limin Kuang, Zhaolong Han, Dai Zhou, Yongsheng Zhao, Yan Bao, Lei Duan, Jiahuang Tu, Yaoran Chen and Mingsheng Chen

Energy, 2023, vol. 281, issue C

Abstract: The winglet has been widely deployed in the optimization of the blade design as it reduces the tip loss of the blade and increases the swept area of the rotor. However, previous studies have not adequately investigated the effect of platform motion on winglet performance in wind turbines. The objective of this study is to propose a novel bent winglet structure for wind turbines to improve performance under both stationary and surge conditions. To achieve this, the NREL Phase VI horizontal axis wind turbine (HAWT) is treated as a baseline. The numerical method employed is validated by comparing the simulated power and pressure coefficients of the HAWT with experimental data from the literature. The performance of the conventional winglet with the proposed novel winglet is compared in detail, taking into account the cant, twist, expansion direction, length, and winglet number of the conventional winglet. The results show that the novel bent winglet exhibits superior performance, with a 14.5% improvement in performance compared to the conventional winglet under surge motion. This study provides a feasible scenario for the optimization of onshore and offshore wind turbine designs.

Keywords: Bent winglet; Horizontal axis wind turbine; Computational fluid dynamics; Platform motion (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223016468
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:281:y:2023:i:c:s0360544223016468

DOI: 10.1016/j.energy.2023.128252

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:281:y:2023:i:c:s0360544223016468