EconPapers    
Economics at your fingertips  
 

Hydrothermal liquefaction for sludge-to-energy conversion: An evaluation of biocrude production and management of waste streams

Huan Liu, Ibrahim Alper Basar and Cigdem Eskicioglu

Energy, 2023, vol. 281, issue C

Abstract: Hydrothermal liquefaction (HTL) is a rapidly developing technology that converts waste biomass, such as municipal sludge, into a petroleum-like biofuel known as biocrude. At the HTL temperature/pressure of 350 °C/170 bar that simulates an HTL unit designed for a wastewater treatment plant (WWTP), this study found that >64% of energy could be recovered as biocrude from mixed primary and secondary sludge. HTL process also generates two waste streams, hydrochar and HTL aqueous. Heavy metals tend to accumulate in hydrochar, which raises concerns about its valorization. Hydrochar had concerning amounts of Cd, Mo, and Zn for land application, while it was non-hazardous for landfilling. Hydrochar had the most P distribution, resulting in a high concentration (4.6% by weight). Almost all P could be recovered by acidic extraction from hydrochar. The impacts of returning HTL aqueous to wastewater treatment processes were evaluated for the first time. HTL aqueous could be aerobically treated. However, its return increased the final effluent COD by 16.3% and 20.5% and decreased UV disinfection performance by 4% and 8% for average flow and low flow (dry season) conditions, respectively. In conclusion, this study yielded significant information in guiding the development of wastewater biorefinery by incorporating HTL into WWTPs.

Keywords: Sewage sludge; Hydrothermal treatment; Waste-to-energy; Biocrude; Wastewater; Hydrochar (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223016626
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:281:y:2023:i:c:s0360544223016626

DOI: 10.1016/j.energy.2023.128268

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:281:y:2023:i:c:s0360544223016626