A double-layer fault diagnosis strategy for electric vehicle batteries based on Gaussian mixture model
Shuhui Wang,
Zhenpo Wang,
Ximing Cheng and
Zhaosheng Zhang
Energy, 2023, vol. 281, issue C
Abstract:
Battery fault diagnosis is essential to ensure the safe operation of electric vehicles (EVs). In this paper, due to the complexity of EVs’ battery thermal runaway tracing investigation and the limited capacity of on-board computing system, a double-layer fault diagnosis strategy for abnormal cells is proposed. The method bases on probability distribution, which can accurately trace a faulty cell and avoid misinterpreting a normal cell. In this method, unified statistical features are extracted from the big data during vehicle charging, and the corresponding statistical values are analyzed based on Gaussian mixture model and abnormal alarm is made based on the risk accumulation in double-layer diagnostics. The electric vehicles with thermal runaway accident are taken as examples to verify the method, and based on the data of normal-running vehicles, the false alarm tests are carried out. The verification results show that the proposed method can not only successfully identify the outlier cells, but also not generate false alarm, which is conducive to the practical application of fault diagnosis in the on-board battery management system.
Keywords: Lithium-ion battery; Fault diagnosis; Statistical values; Gaussian mixture model; Double-layer fault diagnosis strategy (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223017127
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:281:y:2023:i:c:s0360544223017127
DOI: 10.1016/j.energy.2023.128318
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().