Fault data seasonal imbalance and insufficiency impacts on data-driven heating, ventilation and air-conditioning fault detection and diagnosis performances for energy-efficient building operations
Fangliang Zhong,
John Kaiser Calautit and
Yupeng Wu
Energy, 2023, vol. 282, issue C
Abstract:
The heating, ventilation and air-conditioning fault impacts vary with different seasonal climatic conditions, but the fault data may not be available under some seasons in real buildings due to the frequency and span of fault occurrences. This study evaluates the fault detection and diagnosis (FDD) performance differences of the proposed convolutional and recurrent neural networks under limited seasonal fault data scenarios and an ideal scenario covering climatic conditions from multiple seasons. The fault and normal data were gathered from fault simulations using a verified prototype building EnergyPlus model and two real fault datasets. Four different data experiments based on the simulated dataset were implemented to assess FDD performance differences, and two sets of further experiments based on each real fault dataset were conducted to verify the findings from previous experiments. The results show that the FDD architectures, trained on sufficient fault data under a certain season(s), indicate poor generalization ability to identify faults under unseen seasons. Moreover, the coverage of fault data under different seasons is more crucial in enhancing FDD performances than the amount of fault data under each season. These findings will help researchers consider this practical issue when evaluating new or existing data-driven FDD methods.
Keywords: HVAC; Fault detection and diagnosis (FDD); Fault impact; Deep learning; Building performance simulation; Climate conditions (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223015748
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:282:y:2023:i:c:s0360544223015748
DOI: 10.1016/j.energy.2023.128180
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().