Health estimation of lithium-ion batteries with voltage reconstruction and fusion model
Xinghua Liu,
Siqi Li,
Jiaqiang Tian,
Zhongbao Wei and
Peng Wang
Energy, 2023, vol. 282, issue C
Abstract:
Accurate state of health (SOH) estimation is crucial for Lithium-ion battery in electric vehicles (EVs). This work proposes a battery SOH estimation method based on voltage reconstruction and fusion models. Firstly, a voltage curve reconstruction method based on importance sampling is proposed to solve the V–Q curve. Then, feature factors related to SOH are extracted and their correlation with SOH is analyzed. Furthermore, a SOH estimation fusion model is established based on improved Support Vector Regression (SVR) and Convolutional Neural Network (CNN). Finally, the accuracy of the proposed algorithm is verified in 20% and 30% small sample scenarios, respectively. The experimental results show that the numerical evaluation indicators of the proposed method are superior to Gauss Process Regression (GPR), CNN, whale optimization algorithm-SVR (WOA-SVR) and Long Short Term Memory (LSTM) neural network, which indicates that the proposed method has good performance.
Keywords: Electric vehicles; State of health; Feature extraction; Lithium-ion battery; Convolutional neural network; Support vector regression (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223016109
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:282:y:2023:i:c:s0360544223016109
DOI: 10.1016/j.energy.2023.128216
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().