EconPapers    
Economics at your fingertips  
 

Hybrid deep learning model for efficient state of charge estimation of Li-ion batteries in electric vehicles

Muhammad Hamza Zafar, Majad Mansoor, Mohamad Abou Houran, Noman Mujeeb Khan, Kamran Khan, Syed Kumayl Raza Moosavi and Filippo Sanfilippo

Energy, 2023, vol. 282, issue C

Abstract: State of charge (SoC) estimation is critical for the safe and efficient operation of electric vehicles (EVs). This work proposes a hybrid multi-layer deep neural network (HMDNN)-based approach for SoC estimation in EVs. This HMDNN uses Mountain Gazelle Optimizer (MGO) as a training algorithm for the deep neural network. Our method leverages the intrinsic relationship between the SoC and the voltage/current measurements of the EV battery to accurately estimate the SoC in real time. We evaluate our approach on a large dataset of real-world EV charging data and demonstrate its effectiveness in comparison to traditional SoC estimation methods. Four diverse Li-ion battery datasets of electric vehicles are employed which are the dynamic stress test (DST), Beijing dynamic stress test (BJDST), federal urban driving schedule (FUDS), and highway driving schedule (US06) with different temperatures of 0oC,25oC,45oC. The comparison is made with Mayfly Optimization Algorithm based DNN, Particle Swarm Optimization based DNN and Back-Propagation based DNN. The evaluation indices used are normalized mean square error (NMSE), root mean square error (RMSE), mean absolute error (MAE), and relative error (RE). The proposed algorithm achieves 0.1% NMSE and 0.3% RMSE on average on all datasets, which validates the effective performance of the proposed model. The results show that the proposed neural network-based approach can achieve higher accuracy and faster convergence than existing methods. This can enable more efficient EV operation and improved battery life.

Keywords: State of charge (SoC); Deep neural network (DNN); Mountain gazelle optimizer (MGO); Relative error (RE); Statistical analysis (SA) (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223017115
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:282:y:2023:i:c:s0360544223017115

DOI: 10.1016/j.energy.2023.128317

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223017115