Enhancing solar chimney performance in urban tunnels: Investigating the impact factors through experimental and theoretical model analysis
Youbo Huang,
Xi Liu,
Long Shi,
Bingyan Dong and
Hua Zhong
Energy, 2023, vol. 282, issue C
Abstract:
Efficient and sustainable ventilation in urban tunnels is crucial for combating air pollution and safeguarding human health. This study investigates the design factors impacting solar chimney performance in urban tunnels to optimize ventilation efficiency. Experimental trials analyzed the effects of blockage ratio, chimney height, and solar radiation on temperature distribution and ventilation rate. The results demonstrate that increased chimney height and solar radiation positively influence airflow velocity at the chimney outlet, enhancing ventilation. The temperature rise near absorber is higher than that closed to glazing wall. Temperature distribution within the chimney follows a distinctive horizontal two-piecewise semi-parabolic decay pattern, enabling accurate prediction of temperature profiles along the cavity depth. Novel analytical models predict temperature distribution, airflow velocity, and ventilation rate within the solar chimney system, aiding precise design and optimization. Remarkably, the blockage ratio has limited impact on ventilation rate, allowing for disregarding vehicle blockage effects in solar chimney design for urban tunnels. Matching chimney width to tunnel width and ensuring a relatively high chimney height are emphasized for optimal functionality. The study holds substantial implications for ventilation system design in urban environments, promoting healthier and more sustainable cities.
Keywords: Solar chimney; Urban tunnel; Natural ventilation; Renewable energy; The theoretical model (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223017231
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:282:y:2023:i:c:s0360544223017231
DOI: 10.1016/j.energy.2023.128329
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).