Characterizing water vapor adsorption on coal by nuclear magnetic resonance: Influence of coal pore structure and surface properties
Yujie Li,
Cheng Zhai,
Yong Sun,
Jizhao Xu,
Xu Yu and
Ting Huang
Energy, 2023, vol. 282, issue C
Abstract:
Steam injection is a novel and promising technology for enhancing coalbed methane (CBM) recovery. Accurate descriptions of the migration and adsorption of water vapor on coal is crucial for determining the occurrence state of the CBM and improving CBM production. This study quantitatively characterized the dynamic transport and adsorption processes of water vapor in coal pores and fractures using nuclear magnetic resonance (NMR). The results demonstrated that water vapor was preferentially adsorbed in the coal micropores, which was mainly related to capillary condensation, whereas liquid water filled a wide range of pores and fractures. Due to the differences in the microstructure and surface properties among different coals, the water vapor adsorption behaviors varied significantly. Among the coals used in this study, water vapor was most easily adsorbed on the bitumite with the biggest specific surface area, pore volume, pore area, the highest content of oxygen-containing functional groups, and the strongest wettability. Additionally, the coal pore structure had a greater impact on the water vapor adsorption capacity than the oxygen functional groups and the wettability. This research is of great significance for understanding the flow behaviors of water vapor in porous media and the interactions between coal and water.
Keywords: Steam injection; Coalbed methane; Water vapor adsorption; Nuclear magnetic resonance; Capillary condensation; Wettability (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223018145
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:282:y:2023:i:c:s0360544223018145
DOI: 10.1016/j.energy.2023.128420
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().