State of health estimation of the LiFePO4 power battery based on the forgetting factor recursive Total Least Squares and the temperature correction
Muyao Wu,
Li Wang and
Ji Wu
Energy, 2023, vol. 282, issue C
Abstract:
The decline of the lithium-ion power battery's State of Health (SOH) with usage significantly impacts other state estimation results, such as State of Charge (SOC). Hence, accurate estimation of the lithium-ion power battery's SOH holds vital importance in the battery management system. This paper proposes a SOH estimation method for the lithium-ion power battery, utilizing the Forgetting Factor Recursive Total Least Squares (FFRTLS) and incorporating the temperature correction. The FFRTLS effectively addresses the SOC estimation errors and the terminal current measurement noise simultaneously. The temperature correction method, based on the Arrhenius equation, corrects the influence of the ambient temperature during the SOH estimation process, ensuring that the ambient temperature does not affect the accuracy of the SOH estimation results. Additionally, the capacity convergence coefficient enhances the reliability of the SOH estimation results by preventing abrupt changes of the maximum available capacity. Experimental results on a LiFePO4 power battery under diverse working conditions and varying ambient temperatures, validate the effectiveness of the proposed method. The evaluation indexes, including Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Maximum Absolute Error (Max-AE), demonstrate the high accuracy of the SOH estimation results, with all indexes below 0.21%, 0.25% and 0.35% respectively.
Keywords: LiFePO4 power battery; Forgetting factor recursive total least squares; Temperature correction; Capacity convergence coefficient; Arrhenius equation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223018315
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:282:y:2023:i:c:s0360544223018315
DOI: 10.1016/j.energy.2023.128437
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().