EconPapers    
Economics at your fingertips  
 

Thermal performance enhancement of a red-hot air furnace for a micro-scale externally fired gas turbine system

Dariusz Kardaś, Sylwia Polesek-Karczewska, Tomasz Turzyński, Izabela Wardach-Święcicka, Paulina Hercel, Jakub Szymborski and Łukasz Heda

Energy, 2023, vol. 282, issue C

Abstract: Externally-fired gas turbine (EFGT) has been considered an option in variable combined heat and power energy systems. The key elements in such systems are the high-temperature heat exchangers (HTHE), in which the working fluid (typically air) is heated by flue gas. Since both flows are separated, the solution is considered advantageous for utilization of biomass featuring high levels of particulate matter emissions. An increased interest in these devices has therefore been observed along with the development of small-scale CHP units utilizing locally available biomass. The effectiveness of HTHE, along with the inlet turbine temperature, appears to be one of the main factors influencing the efficiency of EFGT-based systems. Numerous studies on the HTHE designs have been carried out, basically focusing on the use of high-temperature resistant materials to provide safe conditions for long-term operation under elevated temperatures. There is a lack of research considering other methods to improve the effectiveness of the HTHE. The paper presents the analysis of thermal performance of the laboratory-scale 20 kW red-hot air furnace to demonstrate the HTHE effectiveness enhancement by adding water to airflow. The experimental results showed a significant increase (by almost 45%) in the heat exchanger effectiveness for the case of ∼10%wt. water addition. This is due to the enhanced heat capacity of a cooling medium and its absorption properties that results from the steam content. The proposed method for effectiveness increment appears to be beneficial to compensate for the low effectiveness of air-to-fumes tube HTHE.

Keywords: Red-hot furnace; High temperature heat exchanger; Heat transfer enhancement; Thermal radiation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223019850
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:282:y:2023:i:c:s0360544223019850

DOI: 10.1016/j.energy.2023.128591

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223019850