EconPapers    
Economics at your fingertips  
 

Low-speed, low induction multi-blade rotor for energy efficient small wind turbines

Oktay Yilmaz

Energy, 2023, vol. 282, issue C

Abstract: To promote the deployment of small wind turbines (SWTs), thorough understanding of design parameter implications is essential. In-depth research is required to comprehend the influence of design TSR on off-design wind speed performance of multi-blade SWTs. In-house built blade element momentum algorithm was employed, which considered Reynolds number dependence of aerodynamic coefficients and correlated well with experimental results. Peak power coefficients were produced for 0.9, 1.5, 2 and 3 m diameter S826 rotors with blade numbers from 2 to 12 and design TSR of 2–10. Remarkably, regardless of diameter, greatest CP,max values were achieved around design TSR of 4. For peak efficiency, smaller the diameter, narrower the blade number and design TSR range. High-speed rotors have wider TSR range for high power coefficient. Yet, it was shown that operating TSR of low-speed rotors deviates less from design TSR as wind speed varies. It was revealed that low-speed (with a threshold design TSR of 3), low-induction multi-blade rotors provide high CP,max, better efficiency at off-design, shorter starting time and lower wind speed than three-bladed high-speed rotor. A small boost in operational TSR was found to effectively mitigate loss in off-design performance. These are key features to maximize energy harvesting.

Keywords: Low induction rotor; Glauert optimum rotor; Design tip speed ratio; Blade number; Off-design performance; Starting capability (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223020017
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:282:y:2023:i:c:s0360544223020017

DOI: 10.1016/j.energy.2023.128607

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223020017