EconPapers    
Economics at your fingertips  
 

Finite time thermodynamic optimization for performance of absorption energy storage systems

Zhaojin Li, Yuehong Bi, Cun Wang, Qi Shi and Tianhong Mou

Energy, 2023, vol. 282, issue C

Abstract: Absorption energy storage (AES) has attracted worldwide attention due to the high energy storage density and environmental friendliness. To optimize the performance of the AES system, a finite time thermodynamic (FTT) model considering some influencing factors such as time, heat transfer area, heat transfer temperature difference, internal friction and dissipation has been developed in this paper. A new concept of ratio of charging and discharging time is proposed. The general relation of the energy storage efficiency, energy storage rate and energy release rate are induced based on FTT analysis. The distribution of the total thermal conductivity was optimized under the condition of a certain total thermal conductivity and the optimized maximum cooldown release rate has been increased by 14%. The optimal operating conditions of the AES system are obtained. Furthermore, the influences of the internal irreversibility, ratio of charging and discharging time and heat source temperatures on the performance of the AES system are analyzed. The research results can provide theoretical basis and guidance for the AES system design and optimization.

Keywords: Absorption energy storage (AES); Finite time thermodynamic analysis; General relation; Ratio of charging and discharging time; Design and optimization (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223021138
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:282:y:2023:i:c:s0360544223021138

DOI: 10.1016/j.energy.2023.128719

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223021138