EconPapers    
Economics at your fingertips  
 

Economic potentials of carnot batteries in 100% renewable energy systems

Peter Sorknæs, Jakob Zinck Thellufsen, Kai Knobloch, Kurt Engelbrecht and Meng Yuan

Energy, 2023, vol. 282, issue C

Abstract: In 100% renewable energy systems, the requirements for flexibility will be greater than for traditional carbon-based energy systems. New technologies and system setups are needed to provide flexibility for balancing the system. Implementing electricity storages in the energy system could provide parts of the required flexible demand and production, though most of these storage solutions have been shown to have relatively high costs. So-called Carnot batteries have been shown to have a relatively lower cost than traditional batteries, but at a reduced electric efficiency. This paper investigates to what extent large-scale integration of Carnot batteries has a role in the transition to and the operation of 100% renewable energy systems. By implementing Carnot batteries in a 100% renewable energy scenario for Denmark, the energy system effects are identified. The results indicate that the potential economic benefit could be as high as 60.5–66.2 EUR/MWhe discharged, not including costs related to investment as well as operation and maintenance of the Carnot batteries. Thus, large-scale integration of Carnot batteries must perform below this economic threshold to be economic relevant. Existing concepts for stand-alone Carnot batteries are not able to achieve these costs today, therefore solutions for cost reductions should be investigated.

Keywords: Carnot battery; Smart energy system; Energy storage; Renewable energy (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223022314
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:282:y:2023:i:c:s0360544223022314

DOI: 10.1016/j.energy.2023.128837

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223022314