EconPapers    
Economics at your fingertips  
 

Experiment study on heat transfer enhancement of micro heat pipe PV/T by Reynolds number improvement

Jinping Li, Mengyao Niu, Xiaomin Liu, Vojislav Novakovic, Jingbo Dai, Juanjuan Huang, Lingxuan Kong, Dong Zhang and Xiaoxia Li

Energy, 2023, vol. 282, issue C

Abstract: The rapid performance improvement of photovoltaic/thermal (PV/T) implies great potential application to various aspects of society. The previously developed micro heat pipe PV/T by our team has shown favorable cogeneration of electricity and heat in cold regions, while it is badly needed to improve its comprehensive performance by enhancement of heat transfer. For same working fluid as HCFC141b in micro heat pipe, higher Reynolds Number (Re) theoretically means better heat transfer. Therefore, two available micro heat pipes were developed with trapezoidal cross section and rectangular cross section respectively while with same cross section area and applied in two micro heat pipe PV/T systems. Subsequent experiment study testifies that the rectangular micro heat pipe PV/T of higher theoretical Re verily shows more favorable performance than the trapezoidal micro heat pipe PV/T when they are at 45° inclination angle. Deducting power consumption of circulating pump, the average electrical efficiency of rectangular micro heat pipe PV/T system is 12.4%, while that of trapezoidal micro heat pipe PV/T system is 11.9%. Moreover, the thermal efficiency, total energy power, and total energy efficiency of rectangular micro heat pipe PV/T system are respectively 28.1%, 472.3 W, and 40.5%, which are 10.1%, 119.8 W, and 10.8% higher than those of trapezoidal micro heat pipe PV/T system. The results are significant and valuable for the application of micro heat pipe PV/T in cold regions.

Keywords: Micro heat pipe PV/T; Heat transfer enhancement; Reynolds number improvement; Thermal performance; Electrical performance (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223022545
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:282:y:2023:i:c:s0360544223022545

DOI: 10.1016/j.energy.2023.128860

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223022545