A integrated mechanical vapor compression enrichment system of radioactive wastewater: Experimental study, model optimization and performance prediction
Huafu Zhang,
Lige Tong,
Zhentao Zhang,
Yanchang Song,
Junling Yang,
Yunkai Yue,
Zhenqun Wu,
Youdong Wang,
Ze Yu and
Junhao Zhang
Energy, 2023, vol. 282, issue C
Abstract:
Evaporation technology has unique advantages in the enrichment of radioactive ions, which can deal with the high concentration of radioactive wastewater. A integrated mechanical vapor compression (MVC) enrichment system with high efficiency filter was proposed and studied experimentally for radioactive wastewater, whose decontamination factor was 37107.1 for Co2+, 2741.3 for Sr2+, and 52545.5 for Cs+, which saved energy by 76.7–84.3% and operation cost by 72.0–81.0% when compared to the conventional single effect (SE) evaporation system. Exergy destruction and efficiency of the single screw compressor were 7.26 kW and 34.0%, respectively, which should be prioritized for improvement. Mathematical models based on both the heat transfer coefficient (HTC) and coefficient of performance (COP) were established and optimized experimentally, the ideal running parameters were 90–110 kPa for evaporating pressure, 8.5–11.5 °C for heat transfer temperature difference, 1.50–1.60 for compression ratio and 2.0–4.0 kPa for filtration pressure difference, respectively. It will supply the theoretical and data basis for development and design of MVC enrichment system of radioactive wastewater.
Keywords: Enrichment of radioactive wastewater; MVC; MVR; Exergy analysis; Experimental study; Model optimization (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223022624
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:282:y:2023:i:c:s0360544223022624
DOI: 10.1016/j.energy.2023.128868
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().