EconPapers    
Economics at your fingertips  
 

Investigation of the performance parameters for a PEMFC by thermodynamic analyses: Effects of operating temperature and pressure

Nisa Nur Atak, Battal Dogan and Murat Kadir Yesilyurt

Energy, 2023, vol. 282, issue C

Abstract: In the present study, thermodynamic performance characteristics of the proton exchange membrane fuel cell (PEMFC) at ranging operating temperatures and pressures were examined through energy and exergy analyses. The energy and exergy figures of the reactants and products were taken into account by thermodynamic analysis. In addition, the significant parameters such as destroyed exergy, entropy generation, thermal efficiency, and exergy efficiency were calculated at the aforementioned conditions to give more knowledge regarding the PEMFC. In conclusion, the power density and exergy efficiency improved as the operating temperature of the FC boosted. When the current density was 1, the exergy efficiency increased by 13.17% as the operating temperature ascended from 303 K to 363 K. At all operating temperatures, the augmentation in current density caused irreversibility, so entropy generation ascended. Since the increase in operating temperature led to an increase in power density, amount of exergy that was destroyed declined. Augmentation of the working pressure at constant temperature did not remarkably enhance the exergy efficiency. In the case of a current density of 1, the exergy efficiency values at the operating pressures of 3 atm and 12 atm were found to be 54.42% and 53.79%, respectively.

Keywords: PEMFC; Exergy efficiency; Power density; Operating temperature; Operating pressure (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223023010
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:282:y:2023:i:c:s0360544223023010

DOI: 10.1016/j.energy.2023.128907

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223023010