EconPapers    
Economics at your fingertips  
 

Wind power ultra-short-term prediction method based on NWP wind speed correction and double clustering division of transitional weather process

Mao Yang, Yunfeng Guo and Yutong Huang

Energy, 2023, vol. 282, issue C

Abstract: Wind power prediction technology is important for building novel power systems with a high proportion of renewable energy. The quality of Numerical weather prediction (NWP) has a significant impact on the accuracy of ultra-short-term wind power prediction (USTWPP). However, existing NWP do not reflect the adaptability of different weather processes, because of it’ s forecasting errors. In view of this, this paper proposes an USTWPP method based on NWP wind speed correction and division of transitional weather process. The combined prediction method was first used to correct the NWP wind speed, and then we use the double clustering method to divide the transitional weather processes to establish a model for USTWPP based on different scenarios, the overall method was finally applied to a wind farm in west inner Mongolia, China. Compared to the pre-correction, the wind speed forecasted RMSE was reduced by 1.702 and the MAE by 1.366. Based on the wind power ultra-short-term prediction method proposed in this paper, the average reduction in RMSE is 5.93% and in MAE is 4.82% compared to the various comparison methods in the four seasons. The USTWPP method combining wind speed correction and double clustering division of transitional weather scenarios can significantly improve accuracy of USTWPP.

Keywords: Wind speed correction; Transitional weather process division; Double clustering; Weighted clustering indicator; Wind power ultra-short-term prediction (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223023411
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:282:y:2023:i:c:s0360544223023411

DOI: 10.1016/j.energy.2023.128947

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223023411