Effect of co-digestion and hydrodynamic disintegration on the methane potential of sewage sludge and organic fraction of municipal solid waste with consideration of the carbon footprint
Justyna Walczak,
Beata Karolinczak and
Monika Zubrowska-Sudol
Energy, 2023, vol. 282, issue C
Abstract:
The study objective was to investigate the applicability of co-digestion and/or hydrodynamic disintegration as potential methods of methane production intensification from sewage sludge (SS) and the organic fraction of municipal solid waste (OFMSW) with consideration of carbon footprint (CF) assessment. Methane production was determined by means of biochemical methane potential tests. For co-digestion, the highest increase in methane production (53.8 %) was observed for the SS:OFMSW mixing ratio 40:60. Hydrodynamic disintegration at all tested energy densities (10, 30 and 60 kJ/L) caused release of soluble organic compounds from both substrates, although accelerated methane production was only observed at 10 kJ/L. An increase in methane potential for substrates disintegrated separately did not imply analogical results for the disintegration of their mixture. Within the assumed limits, CF per 1 Nm3 of produced methane, CF per 1 t of wet feedstock for the digester, and estimated CF per 1 kWh produced were also calculated. Comparable values of all indicators were obtained for monodigestion and co-digestion. The highest CF indices were achieved for monodigestion of disintegrated SS and increased significantly with applied energy density. The obtained results can serve as valuable material for operators of wastewater treatment plants facilitating the selection of sustainable methods of increasing renewable energy production.
Keywords: Co-digestion; Hydrodynamic disintegration; Sewage sludge; Organic fraction of municipal solid waste; Carbon footprint (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223023435
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:282:y:2023:i:c:s0360544223023435
DOI: 10.1016/j.energy.2023.128949
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().