EconPapers    
Economics at your fingertips  
 

Molecular simulation of CH4 adsorption characteristics in bituminous coal after different functional group fractures

Bingnan Ji, Hongyu Pan, Mingkun Pang, Mingyue Pan, Hang Zhang and Tianjun Zhang

Energy, 2023, vol. 282, issue C

Abstract: To explore the effect of different functional group fractures in coal on the adsorption characteristics of CH4, molecular models of bituminous coal (Wiser) with fractured oxygen-containing functional groups (W–O5), sulfur-containing functional groups (W–S5), and nitrogen-containing functional groups (W–N5) were constructed. The microscopic mechanism by which the fracture of different functional groups in bituminous coal molecules affects CH4 adsorption was analyzed using Density Functional Theory (DFT), Molecular Dynamics (MD), and Grand Canonical Monte Carlo (GCMC) methods. The results show that functional groups facilitated the polarization of CH4 during the adsorption process, with the following influence relationship: oxygen-containing functional groups > sulfur-containing functional groups > nitrogen-containing functional groups; Fracturing functional groups in bituminous coal molecules weakened the adsorption capacity and reduced adsorption sites of CH4, the sequence of CH4 adsorption was Wiser > W–N5 > W–S5 > W–O5. High temperature reduced the effect of nitrogen-containing functional group fractures on CH4 adsorption, but had no obvious effect on sulfur-containing and oxygen-containing functional groups. The interaction between CH4 and the coal molecule decreased after functional group fractures, causing the enhanced diffusion of CH4 on bituminous coal molecules, and the order was W–O5 > W–S5 > W–N5 > Wiser. Additionally, the fracture of functional groups decreased the pore size of the bituminous coal molecules, which inhibited CH4 adsorption but facilitated its diffusion. The research provides theoretical support for enhancing CH4 desorption and improving the recovery rate of coalbed CH4.

Keywords: functional group fractures; Density functional theory; Grand canonical Monte Carlo; Molecular dynamics; Adsorption (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223023617
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:282:y:2023:i:c:s0360544223023617

DOI: 10.1016/j.energy.2023.128967

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223023617