EconPapers    
Economics at your fingertips  
 

Dynamic liquid level prediction in oil wells during oil extraction based on WOA-AM-LSTM-ANN model using dynamic and static information

Chunyang Leng, Mingxing Jia, Haijin Zheng, Jibin Deng and Dapeng Niu

Energy, 2023, vol. 282, issue C

Abstract: Accurately predicting the dynamic liquid level is the key to energy efficient operation of oil wells, however, the dynamic liquid level of oil wells in the same area varies widely, and the existing methods cannot achieve uniform modeling of the dynamic liquid level of multiple wells with high accuracy. To this end, based on the parameters of the multi-wells production process, this paper proposes method for predicting the dynamic liquid level of oil wells based on a Long short-term memory (LSTM) with attention mechanism (AM) and artificial neural network (ANN) optimized by the whale optimization algorithm (WOA). First, the factors significantly related to the change in the dynamic liquid level are identified and divided into dynamic and static information. Dynamic features are extracted using AM-LSTM. AM can enhance the impact of important information when extracting dynamic features using LSTM; Static features are extracted through ANN; Finally, both dynamic and static features are used as inputs to ANN to predict the dynamic liquid level. Solve the prediction model parameter selection problem with WOA. Using historical oilfield data collected in the field for validation, the experiment proves that the proposed method in this paper is effective for predicting the dynamic liquid level of multi-wells. Therefore, this prediction model can be used as a tool to detect the dynamic liquid level, which can achieve the purpose of reducing energy consumption and improving efficiency during oil extraction.

Keywords: Dynamic liquid level prediction; Attention mechanism; Long short-term memory network; Artificial neural network; Whale optimization algorithm (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223023757
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:282:y:2023:i:c:s0360544223023757

DOI: 10.1016/j.energy.2023.128981

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223023757