Energy management for regional microgrids considering energy transmission of electric vehicles between microgrids
Feixiang Jiao,
Yuan Zou,
Yi Zhou,
Yanyu Zhang and
Xibeng Zhang
Energy, 2023, vol. 283, issue C
Abstract:
As the proliferation of electric vehicles (EVs) continues to accelerate, the inherent attributes of EVs warrant meticulous consideration in the realm of energy dispatch. In order to evaluate the ability of EVs as mobile energy storage, this paper presents an energy management framework for the microgrids' online dispatch, which accounts for the spatio-temporal energy transmission of EVs between microgrids. The energy management framework contains two iterative processes: optimizing charging price and guiding charging dispatch. To sufficiently capture the uncertainties of the renewable energy and load demand, chance-constrained optimization is utilized to determine the charging price by reasonable power allocation. To achieve a continuous and efficient control policy, a normalized advantage function-deep Q learning network (NAF-DQN) is developed for EV dispatch under V2G technology. The above two processes as a coupled optimization problem are solved alternately until convergence. Numerical cases considering energy transmission of EVs between microgrids are studied to demonstrate the superiority of the proposed dispatch framework. The simulation results indicate improved computational efficiency and higher-quality solution.
Keywords: Microgrid; Electric vehicle; Uncertainties; Chance-constrained optimization; Normalized advantage function-deep Q learning network (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223018042
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:283:y:2023:i:c:s0360544223018042
DOI: 10.1016/j.energy.2023.128410
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().