Aging mechanism analysis and capacity estimation of lithium - ion battery pack based on electric vehicle charging data
Tao Sun,
Jianguo Chen,
Shaoqing Wang,
Quanwei Chen,
Xuebing Han and
Yuejiu Zheng
Energy, 2023, vol. 283, issue C
Abstract:
Due to the incompleteness of charging data, the voltage step caused by fast charging conditions and sampling accuracy of the battery management system, the conventional mechanism model is not applicable to the aging mechanism analysis and capacity estimation of electric vehicle batteries. Therefore, this study applies support vector regression to achieve the actual charging condition equivalence based on the variable operating conditions charging data of electric vehicles. The aging parameters and open circuit voltage reconstruction based on the dual-tank model are applied to obtaining the aging state and the capacity of cells. The capacity of the battery pack is calculated by the pack formation theory. The maximum error of the aging parameters obtained by the multiple stage constant current is 5.572% compared with the 1/20 C (C is the charge/discharge current rate unit) constant current charging of the experimental battery. As to the maximum relative error of cell capacity estimation based on vehicle data is 0.99%, and battery pack capacity estimation is 0.86%. The method proposed in this paper is not only able to quantitatively analyze the dominant factors of battery capacity decay, but also achieves high accuracy capacity estimation of the vehicle battery pack and its individual cells.
Keywords: Electric vehicle charging data; Support vector regression; Dual-tank model; Capacity estimation; Ageing parameters (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223018510
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:283:y:2023:i:c:s0360544223018510
DOI: 10.1016/j.energy.2023.128457
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().