EconPapers    
Economics at your fingertips  
 

Comparative performance evaluation of multi-objective optimized desiccant wheels coated with MIL-100 (Fe) and silica gel composite

Jun Yeob Chung, Myeong Hyeon Park, Seong Ho Hong, Jaehyun Baek, Changho Han, Sewon Lee, Yong Tae Kang and Yongchan Kim

Energy, 2023, vol. 283, issue C

Abstract: Metal-organic frameworks have been introduced as promising alternative materials to improve the performance of conventional desiccant wheels (DWs) in desiccant cooling systems. However, simultaneously achieving high dehumidification and energy performance of DWs coated with advanced desiccant materials is challenging owing to the trade-off between these indices. In this study, based on multi-objective optimization, the dehumidification and energy performance improvement of a DW coated with MIL-100 (Fe) (MCDW) over a conventional DW coated with silica gel (SGDW) and silica composite (SCDW) were evaluated. Based on the data measured in this study, a metamodel was developed using an artificial neural network to predict the performance of the MCDW. Furthermore, Morris sensitivity analysis was conducted to determine the decision variables. The optimal solutions were determined using multi-objective optimization and a Euclidean distance-based approach. Finally, a comparative performance evaluation between the optimized MCDW and SCDW was conducted under baseline conditions. As a result, the optimized MCDW showed higher dehumidification and energy performance than the optimized SCDW and SGDW.

Keywords: Desiccant wheel; Metal-organic frameworks; Multi-objective optimization; Sensitivity analysis; Performance comparison (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223019618
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:283:y:2023:i:c:s0360544223019618

DOI: 10.1016/j.energy.2023.128567

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223019618