Geothermal-solar energy system integrated with hydrogen production and utilization modules for power supply-demand balancing
Guokun Liu,
Dongxu Ji and
Yanzhou Qin
Energy, 2023, vol. 283, issue C
Abstract:
The power generation of geothermal energy is severely restricted by its low grade and limited flexibility. We propose integrating geothermal and solar energy and introducing hydrogen energy modules to achieve a flexible and highly efficient renewable power supply for communities. The comprehensive thermodynamic models of the proposed combined system are established, and the daily performance of the system is simulated and analyzed based on a power supply-demand matching strategy. From the results, the switching points of hydrogen generation/consumption mode occur at 6 h and 18 h. During the day time, the system's overall energy efficiency varies between 13.28% and 14.36%, representing a significant improvement compared to the previous geothermal-solar combined system only with 5.67% energy efficiency. Then, the effects of geothermal water temperature and solar radiation intensity on the system's daily performance are analyzed, showing the daily net hydrogen production amount increases from −28.71 kg to 306.24 kg with the improved geothermal grade. Finally, the fluctuant electricity profiles of two typical communities are taken into the simulation for case analysis. The good demand-supply matching results for both cases showcase the dynamic capture ability of the models and validate the applicability of the proposed system.
Keywords: Geothermal power generation; Solar collector; Organic Rankine cycle; Electrolysis; Proton exchange membrane fuel cell; Thermodynamic modelling (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223021308
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:283:y:2023:i:c:s0360544223021308
DOI: 10.1016/j.energy.2023.128736
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().