Achieving wind power and photovoltaic power prediction: An intelligent prediction system based on a deep learning approach
Yagang Zhang,
Zhiya Pan,
Hui Wang,
Jingchao Wang,
Zheng Zhao and
Fei Wang
Energy, 2023, vol. 283, issue C
Abstract:
Accurately predicting wind and photovoltaic power is one of the keys to improving the economy of wind-solar complementary power generation system, reducing scheduling costs and no-load losses, and ensuring grid stability. However, the natural properties of energy result in complex fluctuations in their corresponding power sequences, making accurate predictions difficult. Therefore, this paper proposes an intelligent prediction system that combines decomposition algorithms and deep learning for ultra-short-term prediction of wind and photovoltaic power. First, an improved decomposition algorithm is proposed, based on fuzzy entropy's property that its value increases with the increase of sequence uncertainty, particle swarm optimization (PSO) is used to search for the optimal parameter combinations of variational modal decomposition (VMD), so that it can automatically adjust the parameters for energy data with different characteristics to reduce the human error. Then, a convolutional neural network (CNN) architecture that balances operational efficiency and prediction performance is constructed, and the hyperparameters of the CNN are optimized using the wild horse optimization algorithm (WHO) to improve the stability and accuracy of the prediction model. In this paper, real data from wind power plants and photovoltaic power plants in China are used as experimental objects, and experiments are carried out in three aspects, namely, benchmark model selection, decomposition algorithm comparison and combined model comparison. The results show that selecting CNN as the benchmark model is a good choice; the improved VMD has better decomposition performance than other state-of-the-art decomposition algorithms. The system proposed in this paper is highly generalizable and adaptive, and its prediction performance and accuracy greatly outperform that of other comparative models, with prediction accuracies improved by 72% and 79%, respectively, compared to a single CNN model.
Keywords: Renewable energy; Short-term forecast; VMD; CNN; Optimization algorithm (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422302399X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:283:y:2023:i:c:s036054422302399x
DOI: 10.1016/j.energy.2023.129005
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().