Dynamics of water vapour sorption on composite LiCl/(silica gel): An innovative configuration of the adsorbent bed
S.V. Strelova,
Yu. I. Aristov and
L.G. Gordeeva
Energy, 2023, vol. 283, issue C
Abstract:
Adsorption Heat Conversion (AHC) is energy and environment saving alternative to conventional compression systems. The growth of specific power of AHC systems is a prerequisite for the wider spreading of AHC. To enhance the power, an innovative adsorbent bed configuration was suggested, namely, a compact adsorbent layer prepared by gluing to heat exchanger surface ready-made grains instead of uniform adsorbent coating. The main goal was a comparative study of water sorption dynamics on loose and glued grains of a composite LiCl/(silica gel) to evaluate the power enhancement. The grains were glued to aluminium foil with various binders, both organic and inorganic, the effect of the binder nature was studied. The effective heat transfer coefficient was evaluated under typical conditions of adsorption chilling cycle. The main findings are: (a) the effective heat transfer coefficient is increased up to 1.5 times when using inorganic binders; (b) organic binders do not affect heat transfer; (c) heat transfer intensification leads to accelerating initial stage of the ad/desorption; (d) at longer times, a desorption slowdown is observed due to hindered mass transfer or LiCl crystallisation. The factors controlling the adsorption kinetics are determined and recommendations are formulated for designing innovative bed configuration.
Keywords: Adsorption heat conversion; Composite LiCl/Silica; Water adsorption dynamics; Adsorbent coating; Heat transfer intensification; Binder (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223024155
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024155
DOI: 10.1016/j.energy.2023.129021
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().