Retrofit heat exchanger network optimization via graph-theoretical approach: Pinch-bounded N-best solutions allows positional swapping
Sin Yong Teng,
Ákos Orosz,
Bing Shen How,
Jeroen J. Jansen and
Ferenc Friedler
Energy, 2023, vol. 283, issue C
Abstract:
Retrofit heat exchanger network (HEN) optimization is a fundamentally unique problem which requires the consideration of existing structures, compared to grassroots design problems. The optimization of retrofit HENs is particularly difficult due to the integration of both existing and newly acquired equipment. The re-routing of existing equipment can lead to various network topologies, increasing the complexity of considerations. In this work, we exploit the P-graph framework to solve retrofit HEN problems, guaranteeing to find the topology of optimal solutions within the constrained space of the HEN retrofit problem. The P-graph framework has additional advantages that allows topologically-efficient search space, simplifies additional unit placement, considers unit positional swapping (re-sequencing and re-piping within search constraints), considers stream splitting, and n-best solution visualization. The pinch minimum utility constraint also provides a bound for the maximum number of modifications in the HEN, significantly reducing search space. The proposed P-graph-based approach is demonstrated using a real refinery case study to show its capability in obtaining the topology of the optimal HEN, highlighting the economic and energy benefits. Further extensions to other retrofit process integration problems (e.g. retrofit water network, hydrogen network etc.) will be enabled via the proposed P-graph approach.
Keywords: Retrofit; Heat exchanger network; Process network; P-Graph; Energy (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223024234
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024234
DOI: 10.1016/j.energy.2023.129029
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().