Study on the performance of a forced convection low temperature radiator for district heating
Haichao Wang,
Yang Zhou,
Xiangli Li,
Xiaozhou Wu,
Hai Wang,
Abdollahi Elnaz,
Katja Granlund,
Risto Lahdelma and
Esa Teppo
Energy, 2023, vol. 283, issue C
Abstract:
Low temperature district heating has significant advantages in energy efficiency, but a huge amount of existing radiators lack the capabilities for low-temperate heating. The innovation of this study is to develop an optimal and techno-economic method to improve the heating power of existing radiator by mounting a small fan considering different hydraulic connection modes. An experimental test rig was designed to study the optimal installation positions and angles of the fan. For a dormitory room in China, a computational fluid dynamics (CFD) model was developed and verified. The model was used to determine the lowest supply temperature of the radiator. Results show that the fan should be placed in a position and angle that blows air over the hottest surface of the radiator i.e. the hot center. The lowest supply temperatures before and after installing the fan are 42.3 °C and 39.5 °C. The response speed is increased by 28%, stability time is shortened by 13%, while the maximum indoor temperature difference is reduced by 15% and the maximum indoor air velocity is reduced by 0.07 m/s. Payback time is 63 days for case study, indicating a good economic feasibility. The method is beneficial to both the heat plant and users.
Keywords: Forced convection; Low temperature radiator; Fan; Supply water temperature; Renewable energy (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223024301
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024301
DOI: 10.1016/j.energy.2023.129036
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().