EconPapers    
Economics at your fingertips  
 

Innovative mini-channel design for a compound parabolic solar thermal collector serving intermediate temperature applications

Supriya S. More, Atul A. Sagade, G. Ravindranath, Sagar More and Santosh More

Energy, 2023, vol. 283, issue C

Abstract: The heat flux in the focal region of a compound parabolic collector (CPC) and the receiver's surface is varying and ununiform, and its effective absorption is one of the challenging tasks. It opens new opportunities for suitable and appropriate designs for the receiver. Thus, a new design of the mini-channel receiver is proposed based on fluid flow optimization to address the issue. The pressure drop analysis enables the decision of the dimensions of the proposed mini-channel receiver. MATLAB programming enables flow optimization through a mini-channel receiver under variable solar flux falling its surface to attain the highest possible temperature. The performances of the optimized and parallel fluid flow mini-channel receivers are compared by integrating them with CPC.

Keywords: Mini-channel receiver; Compound parabolic collector; Flux flow pattern for CPC absorber; Solar thermal technologies; Sustainable development goals (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223024386
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024386

DOI: 10.1016/j.energy.2023.129044

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024386