EconPapers    
Economics at your fingertips  
 

Bi-layer sizing and design optimization method of propulsion system for electric vertical takeoff and landing aircraft

Mingkai Wang, Guotai Xiaoyang, Ruichen He, Shuguang Zhang and Jintao Ma

Energy, 2023, vol. 283, issue C

Abstract: Electric vertical takeoff and landing (eVTOL) aircraft is a promising solution for future urban air mobility, but it suffers from insufficient energy and power density as opposed to fossil fuel-based aircraft. This paper proposes a bi-layer design optimization method for electric propulsion systems. To tackle the issue of high-dimension design parameters and multiple performance constraints, the design process is divided into two parameter optimization problems. In the upper layer, only scalar parameters of components are considered to determine a feasible sizing result subject to energy-flow limits. The outcome of this layer further serves as the initial guess of the lower design layer. The constraints of power conservation and conversion among components are taken into account. The optimization is scheduled in a cascaded paradigm that maximizes the total energy efficiency with minimized total weight. The blade-element momentum method is employed to estimate propeller thrust and torque coefficients. The proposed method is applied to a tilt-wing eVTOL. The sizing results shows that the eVTOL mass is reduced by 11.66% as opposed to the benchmark method. The proposed method provides a generic framework for sizing and design optimization independent of configuration and mission profiles.

Keywords: Aircraft design; Optimization; Vertical takeoff and landing; Electric propulsion (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223024465
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024465

DOI: 10.1016/j.energy.2023.129052

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024465