EconPapers    
Economics at your fingertips  
 

Application of exergetic analysis to inverted Brayton cycle engine at different flight conditions

Mustafa Karabacak, Mehmet Kirmizi, Hakan Aygun and Onder Turan

Energy, 2023, vol. 283, issue C

Abstract: The aviation sector has continued to be modernized by overcoming technological challenges involving strict constraints for mission requirements. In this context, the great attention to newly proposed methods which the requirements satisfied has been drawn in the related aviation field. As a novelty, performance and exergy analyses of inverted Brayton cycle engine (IBCE) are investigated at supersonic speed (2.5 M) by comparing it with a conventional afterburning turbojet engine (CATE) in this study. Moreover, exergy analysis is performed solely for the IBCE at 5 M where only the IBCE could generate thrust. According to performance findings, specific fuel consumption (SFC) of the CATE changes from 57.97 g/kNs and 71.72 g/kNs whereas it raises from 51.76 g/kNs and 56.57 g/kNs for the IBCE due to variation of turbine inlet temperature (TIT) and afterburner exit temperature (AET) at 2.5 M. Also, thermal efficiency of the CATE varies approximately between 32.97% and 46.73% while that of IBCE changes between 50.72% and 58.43% for IBCE at 2.5 M. At hypersonic speed, SFC of the IBCE is measured to vary between 71.34 g/kN and 85.49 g/kN at 5 of Mach. Lastly, the exergy efficiency of IBCE changes between 23.73% and 27.70% at same conditions. Where the higher TIT leads to lowering it whereas the higher AET provides increment of exergy efficiency. This study shows that thanks to cycle change, gas turbine engines could provide more advantages for new generation aircraft compared with conventional ones.

Keywords: Brayton cycle engine; Exergy analysis; Supersonic aircraft; Turbojet engine (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223024489
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024489

DOI: 10.1016/j.energy.2023.129054

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024489