EconPapers    
Economics at your fingertips  
 

Enhanced coati optimization algorithm-based optimal power flow including renewable energy uncertainties and electric vehicles

Hany M. Hasanien, Ibrahim Alsaleh, Abdullah Alassaf and Ayoob Alateeq

Energy, 2023, vol. 283, issue C

Abstract: Power systems now face new issues due to incorporating electric vehicles (EVs) and renewable energy resources (RERs). This paper proposes a novel Enhanced Coati Optimization Algorithm (ECOA) for obtaining the optimal solution of the probabilistic optimal power flow (POPF) problems. The ECOA is a metaheuristic optimization algorithm that is robust and efficient for solving complex problems. It is used to tackle the OPF problem, which considers the stochastic characteristics of RERs. Moreover, EVs are included in the presented power systems in this paper. The novel approach is tested and verified on the IEEE-57 and IEEE-118 networks. The effectiveness of the proposed method is demonstrated by making a comparison with other metaheuristic-based methods. To obtain a practical study, real data of wind speed, solar irradiance, and electric vehicles profile are incorporated in the dynamic analyses. The simulation results show that the ECOA is robust and efficient for solving the OPF problem. It can also improve the performance of power systems with RESs and EVs. The findings of this research demonstrate that the suggested approach is promising for power system optimization problems, including RERs and EVs.

Keywords: Electric vehicles; Optimization methods; Probabilistic optimal power flow; Renewable energy (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223024635
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024635

DOI: 10.1016/j.energy.2023.129069

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024635