EconPapers    
Economics at your fingertips  
 

A multi-scale learning approach for remaining useful life prediction of lithium-ion batteries based on variational mode decomposition and Monte Carlo sampling

Meng Wei, Min Ye, Chuanwei Zhang, Yan Li, Jiale Zhang and Qiao Wang

Energy, 2023, vol. 283, issue C

Abstract: Reliable and accurate prediction of remaining useful life for lithium-ion batteries has tremendous significance, since they can alleviate users' anxiety about mileage and safety. However, accuracy and reliability of remaining useful life prediction are affected by capacity regeneration and uncertainty quantification. In this study, we propose an approach to predict the remaining useful life of lithium-ion batteries, where multi-scale learning is developed to catch the uncertainty and capacity regeneration. Specifically, the multi-scale learning approach based on Gaussian process regression and dropout-Monte Carlo gated recurrent unit is applied to establish accurate prediction model with uncertainty quantification. Meanwhile, the optimal charging voltage interval is extracted with a high correlation coefficient. The variational mode decomposition is selected to multi-scale decompose the proposed health indicator as intrinsic mode functions and residual term. Finally, the observed data has been selected to verify the accuracy and robustness of the proposed method. Compared to the existing single data-driven methods, the proposed method can obtain high accuracy and strong robustness for RUL prediction with root mean square error limited below 3%.

Keywords: Lithium-ion batteries; Remaining useful life; Multi-scale learning; Capacity regeneration; Uncertainty quantification (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223024805
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024805

DOI: 10.1016/j.energy.2023.129086

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024805