Predicting uncertainty of a chiller plant power consumption using quantile random forest: A commercial building case study
Behzad Salimian Rizi,
Gregory Pavlak,
Vincent Cushing and
Mohammad Heidarinejad
Energy, 2023, vol. 283, issue C
Abstract:
Selecting an appropriate confidence level for chillers models could lead to better prediction of the peak electricity load, to more efficiently participate in demand response programs, and to manage the operation and performance of chiller plants. Therefore, this study aims to predict the power consumption of a chiller plant in a high-rise commercial building based on Quantile Random Forest (QRF). This study proposed a simplified data-driven approach to compute the lower and upper bounds of the prediction intervals (PIs) of power consumption for a chiller plant, consisting of four chillers. An evaluation of the proposed data-driven approach using measured datasets and computed PIs metrics demonstrates that the PI coverage probability for the samples in test datasets for all chiller models with the confidence level of 80% and 90%, are above 80% and 90%, respectively. Also, the results show that by increasing the confidence level from 80% to 90%, the upper and lower bounds of the demand charge differ from the actual value by a factor of 3.3 and 1.7 times greater, respectively. This approach has implications for developing sequences of operations for chiller plants in building automation systems for evaluating past performance and for achieving future optimization of these plants.
Keywords: Quantile Random Forest; Prediction interval estimation; Water-cooled chiller plant; Confidence level; Demand response (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223025069
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:283:y:2023:i:c:s0360544223025069
DOI: 10.1016/j.energy.2023.129112
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().