EconPapers    
Economics at your fingertips  
 

Evaluation and optimization of hydrogen addition on the performance and emission for biodiesel dual-fuel engines with different blend ratios based on the response surface method

Dongli Tan, Dongmei Li, Su Wang, Zhiqing Zhang, Jie Tian, Jiangtao Li, Junshuai Lv, Wenling Zheng and Yanshuai Ye

Energy, 2023, vol. 283, issue C

Abstract: Problems such as air pollution caused by engine burning fossil fuels are becoming increasingly severe. Consequently, the pursuit of clean and efficient energy alternatives, as well as enhancements in the combustion of fossil fuels, have emerged as potential avenues for resolving these challenges. Firstly, a 3D simulation model of the engine is made using the CONVERGE program. Then, the biodiesel-hydrogen (0%, 5%, 10%, and 15%) blends are employed to investigate the combustion processes for the diesel-fuel engine at various loading (50%, 75%, and 100%). Finally, the response surface approach is employed to optimize the biodiesel-hydrogen engines' combustion and emission parameters. The findings demonstrate that combustion pressure and temperature in engine cylinders will also rise as the hydrogen level increases. The hydrogen addition to the engine can enhance its combustion and emission properties. The outcomes prove that 0.656 is the ideal value for multi-objective optimization analysis using the response surface method. The engine reaches optimal working conditions when the hydrogen energy percentage is 6.9%, the load is 100%, and EGR is 7.7%. At this moment, the BSFC, BTE, HC, and NOx emissions were 208.31 g/(kW·h), 41.06%, 340 ppm, and 490 ppm, respectively.

Keywords: Biodiesel-hydrogen; Combustion and emission characteristics; Engine; Response surface methodology (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223025628
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:283:y:2023:i:c:s0360544223025628

DOI: 10.1016/j.energy.2023.129168

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223025628