EconPapers    
Economics at your fingertips  
 

CO2 capture performance of ceramic membrane with superhydrophobic modification based on deposited SiO2 particles

Run Qi, Zhaohao Li, Hongyuan Zhang, Hongming Fu, Heng Zhang, Dan Gao and Haiping Chen

Energy, 2023, vol. 283, issue C

Abstract: Membrane absorption is a promising CO2 capture technology, which is limited by the high cost of membrane materials. Coal fly ash (CFA)-based ceramic membrane as an alternative material for membrane modules can effectively reduce the preparation cost. In this study, CFA-based ceramic membrane with superhydrophobic properties is prepared by depositing SiO2 nanoparticles and grafting 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane (POTS). Characters including pore size distribution, porosity and N2 flux of superhydrophobic membrane are performed. The superhydrophobic modified ceramic membrane is applied to CO2 capture experiments using ethanolamine (MEA) solution as the absorbent. The result shows that the contact angle of the modified ceramic membrane reaches 155.0°, which significantly improves the anti-wetting properties of the membrane surface. The CO2 capture experiment demonstrates a maximum capture efficiency of 97.45% and a mass transfer rate of 21.17 mol/(m2·h). In addition, the superhydrophobic modified ceramic membrane exhibits excellent thermal and chemical stability, sustaining high performance even after 8 h of continuous operation. This study provides the theoretical and empirical foundation for the application of CFA-based superhydrophobic ceramic membranes in CO2 capture.

Keywords: CO2 capture; Coal fly ash; Ceramic membrane; Superhydrophobic; Contact angle (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223025963
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:283:y:2023:i:c:s0360544223025963

DOI: 10.1016/j.energy.2023.129202

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223025963