EconPapers    
Economics at your fingertips  
 

Wind load and load-carrying optical performance of a large solar dish/stirling power system with 17.7 m diameter

Jian Yan, YouDuo Peng and YongXiang Liu

Energy, 2023, vol. 283, issue C

Abstract: Solar dish/Stirling power systems operating in open terrain, the optical performance is very sensitive to wind load because of their large windward area and poor wind permeability, so it is especially important to evaluate the optical performance under wind load. In this paper, a large 38 kW dish/Stirling system with 17.7 m diameter (named XEM-Dish system) is used, the wind loads are simulated and analyzed under 35 sets of wind conditions (17.1 m/s wind speed) with combination of wind direction angle θ∈[0°, 180°] and elevation angle β∈[0°, 90°], the correctness was verified by literature's results. Using an optical-mechanical integrated method, the effects of combined self-weight and wind load on its structural deformation, mirror slope error and flux distribution are evaluated, the main causes and manifestations of the optical deterioration of XEM-Dish system caused by wind load are found, which is similar to deviate-focusing problem affected by tracking errors. Only concentrator is deformed, the mirror slope error components SDx and SDy reach maximum value of 1.755 mrad and 1.828 mrad at worst 45°–0° condition, but optical efficiency still remains at 89.06%, which is excellent. When XEM-Dish system overall deformation, the SDx reached 7.702 mrad and flux distribution is extremely uneven at worst 45°–0° condition, but optical efficiency still reaches about 87.0%.

Keywords: Dish concentrator system; Wind load; Optical-mechanical integration analysis; Optical performance; Mirror slope error; Flux distribution (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223026014
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:283:y:2023:i:c:s0360544223026014

DOI: 10.1016/j.energy.2023.129207

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223026014