Microfluidic experiments and numerical modeling of pore-scale Asphaltene deposition: Insights and predictive capabilities
Mehdi Mahdavifar,
Ali Akbar Roozshenas and
Rohaldin Miri
Energy, 2023, vol. 283, issue C
Abstract:
Pore-scale asphaltene deposition not only affects reservoir permeability and hydrocarbon production efficiency but also impacts reservoirs performance used in other applications, such as geothermal and CO2 storage. The limited availability of comprehensive experimental data has impeded the development of precise predictive models for deposition behavior. This study employs real-time microfluidic experiments and a Lattice Boltzmann-Immersed Boundary numerical model to investigate pore-scale asphaltene deposition. Experimental results directly observe porosity reduction in diverse pore geometries, offering a detailed explanation of asphaltene deposition phenomena. The LB-IB model accurately replicates complex deposition behavior with over 93% agreement with experimental results across various geometries, using only two adjustable parameters. This enables precise predictions of asphaltene phase behavior in porous media. Sensitivity analyses explore the influence of reservoir geometry, flow rates, and asphaltene concentrations on deposition behavior, underscoring their significant impact on porosity reduction and emphasizing the importance of understanding asphaltene deposition. Additionally, the study compares the proposed model to the Wang-Civan model, showcasing its superior accuracy in capturing deposition mechanisms, and suggests modifications to include an upper limit for deposition when throats are entirely filled with asphaltene. This study improves our understanding of pore-scale asphaltene deposition, aiding in optimizing hydrocarbon extraction practices and industry efficiency.
Keywords: Pore-scale modeling; Asphaltene deposition; Microfluidic experiment; Formation damage; Deposition mechanisms; Porous media (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422302604X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:283:y:2023:i:c:s036054422302604x
DOI: 10.1016/j.energy.2023.129210
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().