EconPapers    
Economics at your fingertips  
 

Spatio-temporal correlation for simultaneous ultra-short-term wind speed prediction at multiple locations

Bowen Yan, Ruifang Shen, Ke Li, Zhenguo Wang, Qingshan Yang, Xuhong Zhou and Le Zhang

Energy, 2023, vol. 284, issue C

Abstract: Wind, as a fluid, has continuity in both space and time. Coupling spatial and temporal information to build prediction models can improve wind speed prediction accuracy. This paper proposes a method that predicts wind speed at multiple locations using both spatial and temporal data. Three deep learning models are introduced: Convolutional Residual Spatial-Temporal Long Short-Term Memory neural network (CoReSTL), Convolutional Spatial-Temporal-3D neural network (CoST-3), and Convolutional Spatial-Temporal Long Short-Term Memory neural network (CoST-L). These models combine Convolutional Long Short-Term Memory (ConvLSTM), Residual Network (ResNet), and 1 × 1 3D convolution to extract spatial and temporal correlations between multi-site wind speeds. The spatio-temporal prediction of wind fields under two terrains was carried out to screen out neural network models with higher accuracy. The results show that CoReSTL, CoST-3, and CoST-L all achieved better prediction results. However, the performance of the CoReSTL model was better than that of CoST-3 and CoST-L, with stronger applicability in complex real terrain.

Keywords: Wind speed prediction; Multi-locations; Spatio-temporal correlation; Convolutional long-short memory neural network; Residual network (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223018121
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:284:y:2023:i:c:s0360544223018121

DOI: 10.1016/j.energy.2023.128418

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223018121