EconPapers    
Economics at your fingertips  
 

Fused multi-model predictive control with adaptive compensation for proton exchange membrane fuel cell air supply system

Haowen Hu, Kai Ou and Wei-Wei Yuan

Energy, 2023, vol. 284, issue C

Abstract: Regulating the air supply is crucial for high efficiency and reliable operation of proton exchange membrane fuel cell systems (PEMFCs). In this study, a fused multi-model predictive control (FM-MPC) with an adaptive compensation is proposed for the oxygen excess ratio (OER) regulation of the air supply system. The FM-MPC is designed based on the linearized PEMFC model at low and high power phases, with two linear MPCs implemented and combined using adaptive featured weights. An adaptive compensation strategy is created to address the imbalance of the two MPCs and external load disturbances. The stability of the proposed control is analyzed using Lyapunov's second law. Simulation results demonstrate that the proposed method exhibits less overshoot and faster response than conventional MPCs, with the OER total sum-of-squares error (TSSE) reduced by 59.4% and 87.7% for New European Driving Cycle (NEDC) and Urban Dynamometer Driving Schedule (UDDS) conditions, respectively. Finally, a Hardware-In-the-Loop (HIL) experiment verifies the real-time application potential of the proposed controller, with a mean relative error (MRE) of 1.12% between experiment and simulation.

Keywords: Proton exchange membrane fuel cell (PEMFC); Air supply system; Oxygen excess ratio; Model predictive control; Adaptive multivariable compensation strategy; Lyapunov stability analysis (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223018534
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:284:y:2023:i:c:s0360544223018534

DOI: 10.1016/j.energy.2023.128459

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223018534