EconPapers    
Economics at your fingertips  
 

Investigating the performance of a water-based PVT system using encapsulated PCM balls: An experimental study

Alaa Hamada, Mohamed Emam, H.A. Refaey, M. Moawed and M.A. Abdelrahman

Energy, 2023, vol. 284, issue C

Abstract: The concept of integrating cooling systems with photovoltaic-thermal (PVT) collectors is not new, although it has yet to be widely commercialized. Such systems have the potential to reduce building energy consumption since they can provide combined power and heat generation. Thus, the current work proposes an innovative water-based PVT system coupled with phase change material (PCM) capsules (PVT-PCM panel) and operating in both active and passive cooling modes to maximize the performance of photovoltaic panels in terms of power generation and thermal utilization. Unlike prior PVT systems, the current one achieves a higher electricity generation and heat storage capacity with a lower frictional power to meet the requirements for practical applications. Several sets of experiments were conducted in Cairo, Egypt, under real outdoor climatic conditions, to assess the overall performance of the PVT-PCM panel under various operating scenarios, with the results compared to those of a naturally air-cooled reference PV panel. According to the results, at 3 L/min cooling water flow rate, the actively cooled PVT-PCM panel achieved the highest electrical and thermal energy gain, translating to a maximum cumulative overall efficiency of 74.1%, compared to 34.6% and 12% for the passively cooled PVT-PCM panel and the reference PV panel, respectively.

Keywords: Silicon-based photovoltaics; Phase change material; Encapsulation; Active cooling; Passive cooling; Power generation; Thermal utilization (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223019680
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:284:y:2023:i:c:s0360544223019680

DOI: 10.1016/j.energy.2023.128574

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223019680