EconPapers    
Economics at your fingertips  
 

Effect of shear on durability of viscosity reduction of electrically-treated waxy crude oils

Yiwei Xie, Hongying Li, Miaomiao Xu, Yang Su, Chaoyue Zhang, Shanpeng Han and Jinjun Zhang

Energy, 2023, vol. 284, issue C

Abstract: Applying a high-voltage electric field to waxy oil can significantly reduce its viscosity near the pour point, and the viscosity recovers gradually after the removal of the electric field. The impact of shear, which is an inevitable occurrence during oil pipeline transportation, on the durability of viscosity reduction remains inadequately explored. In this study, four waxy crude oils were subjected to electric fields with various strengths, and the effect of shear on the viscosity and impedance of treated oils was evaluated. The results revealed that a higher field strength promotes the accumulation of more colloidal particles (asphaltenes and resins) on wax particle surfaces, resulting in longer maintenance of viscosity reduction. Shear exhibited a contrasting impact on electrically-treated oils’ viscosity: it hastened the disappearance of the modification effect of oils with low liquid phase viscosity and small colloidal particle size, but preserved the viscosity reduction of oils with high liquid phase viscosity and large colloidal particle size. Further investigation revealed that shear disrupted the interconnection between colloidal particles and wax particles, and promoted the collision and adhesion of free-moving colloidal particles with wax particles. The competition between these two effects determined the effect of shear on the viscosity of treated oils.

Keywords: Waxy crude oil; Electrorheological effect; Durability; Interfacial polarization; Shear (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223019990
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:284:y:2023:i:c:s0360544223019990

DOI: 10.1016/j.energy.2023.128605

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223019990