Mechanisms and field application of in-situ heat injection-enhanced gas drainage
Linjie Hu,
Zengchao Feng,
Dong Zhou and
Xing Wang
Energy, 2023, vol. 284, issue C
Abstract:
The low permeability of coal seams and strong adsorption of methane considerably inhibit gas drainage; thus, developing a method for efficient gas drainage is crucial. The heat injection-enhanced gas drainage tests were carried out in the laboratory and coal mine, and the gas drainage effect and mechanism of heat injection method were studied. Then, through numerical simulation, the gas production law of heat injection method was analyzed from the perspective of water and gas migration. Indoor experiments demonstrated that heat injection strengthened methane desorption and relieved the inhibitory effect of water on gas. The gas drainage effect of field tests was remarkable, and the gas concentration and daily gas production increased by over 10 and 100 times, respectively. During heat injection, water occupied the migration channel of gas, and the inhibition of water on gas was greater than the promotion of temperature, resulting in the reduction of gas production; After heat injection, high temperature promoted gas desorption and relieved the inhibition of water on gas, resulting in a significant increase in gas production. The gas production law obtained from the numerical simulation showed a high degree of consistency with field tests. The results can provide a reference for gas control.
Keywords: Gas drainage; Heat injection method; Field application; Desorption rate; Water-gas two-phase flow (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223021230
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:284:y:2023:i:c:s0360544223021230
DOI: 10.1016/j.energy.2023.128729
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().