EconPapers    
Economics at your fingertips  
 

An investigation of the density of nano-confined subcritical/supercritical water

Bowei Zhang, Xiao Zhao, Jie Zhang, Junying Wang and Hui Jin

Energy, 2023, vol. 284, issue C

Abstract: In various applications such as supercritical water gasification, oil and gas production, and energy harvesting and storage, subcritical/supercritical water is often confined within material pores. Investigating the density and critical parameters of high-temperature and high-pressure water in confined spaces can help us better understand the behavior of water within the pore space. In this study, a topological model consisting of two baths and a carbon nanotube (CNT) is built to examine the effect of temperature (300 K & 600–1173 K), pressure (1 atm & 20–30 MPa), and tube diameter (9.49–50.17Å) on confined density, and used machine learning (ML) to develop a predictive application (APP). The ML model demonstrates excellent predictive performance, achieving an R2 of 0.9962 on the test set. Furthermore, the mean impact value (MIV) is used to evaluate the impact of independent variables on confined density, and find that temperature has the most significant effect. The results indicate that the critical temperature and pressure of water confined within different CNTs are not significantly different from those of bulk water, but the confined critical density is slightly lower than the bulk critical density.

Keywords: Molecular dynamics; Machine learning; Sub/supercritical water; Nano-confined water density prediction (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223025793
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:284:y:2023:i:c:s0360544223025793

DOI: 10.1016/j.energy.2023.129185

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223025793