Coupling dynamic thermal analysis and surface modification to enhance heat dissipation of R410A spray cooling for high-power electronics
Shangming Wang,
Zhifu Zhou,
Xuehao Sang,
Bin Chen,
Alexandros Romeos,
Athanasios Giannadakis and
Panidis Thrassos
Energy, 2023, vol. 284, issue C
Abstract:
With high critical heat flux (CHF) and heat transfer coefficient (HTC), spray cooling is considered as one of the most promising thermal management technologies for high-power electronic devices. To increase its cooling performance, a closed-loop experimental rig was constructed to study the effects of spray and system parameters on heat transfer enhancement by R410A. The best cooling performance can be achieved under optimal subcooling degree of 17 °C and nozzle diameter of 0.56 mm. When the compressor frequency reaches the upper limit of 90 Hz, maximum CHF and HTC on flat surface are 301.6 W/cm2 and 91.7 kW/(m2·K). To further improve CHF, mechanism of heat transfer enhancement by square pin finned surface was revealed in terms of droplet splashing. With fin width of 0.5 mm and height of 3 mm, CHF as high as 522.1 W/cm2 and peak HTC of 407.0 kW/(m2·K) are reached, while maintaining the cooling surface temperature lower than 55.6 °C. Compared to flat surface, CHF and HTC are enhanced by around 73.4% and 3.5 times, respectively. Based on the experimental data, CHF correlation applicable to pin finned surface was obtained with precision of ±12.4% by introducing fin height and width.
Keywords: Spray cooling; Heat transfer enhancement; R410A; Pin finned surface (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422302618X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:284:y:2023:i:c:s036054422302618x
DOI: 10.1016/j.energy.2023.129224
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().