EconPapers    
Economics at your fingertips  
 

Sensible heat aided gas production from gas hydrate with an underlying water-rich shallow gas layer

Aoxing Qu, Dawei Guan, Zhibo Jiang, Qi Fan, Qingping Li, Lunxiang Zhang, Jiafei Zhao, Lei Yang and Yongchen Song

Energy, 2023, vol. 284, issue C

Abstract: Increasing the efficiency of gas production from marine gas hydrate still faces significant problems. Based on the geological survey of marine reservoirs, gas hydrates are generally associated with underlying free gas layers with high temperature and water saturation. Here the effect of this gas layer and its characteristics on the gas and water production from the hydrate layer are studied. It was found that a large temperature difference existed between the two layers during gas production due to the different heat demand and consumption in each layer. Slower gas production rate was observed in case of dense distribution of hydrates in the hydrate-bearing layer and the resulting sluggish gas permeation and enormous heat supply. Notably, this was not present when the free gas layer was more water-saturated. The resulting maximum gas production rate could be effectively enhanced by 41 % at most as well. This was attributed to the increased sensible heat available from the pore water and the interbedded heat exchange. It was thus indicated that a hydrate reservoir with an underlying water-rich layer could be more favorable for gas production in terms of heat supply.

Keywords: Gas hydrate; Underlying shallow gas layer; Joint production; Interlayer heat transfer; Heat supply (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223026671
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:284:y:2023:i:c:s0360544223026671

DOI: 10.1016/j.energy.2023.129273

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223026671