EconPapers    
Economics at your fingertips  
 

A multi-physics coupled multi-scale transport model for CO2 sequestration and enhanced recovery in shale formation with fractal fracture networks

Bo Li, Hao Yu, WenLong Xu, HanWei Huang, MengCheng Huang, SiWei Meng, He Liu and HengAn Wu

Energy, 2023, vol. 284, issue C

Abstract: CO2 sequestration and enhanced gas recovery (CS-EGR) of shale formation involve complex multi-physics couplings, which are still not precisely captured by recent models. In this regard, a modified model fully considering the fractal characterization of fracture networks and multi-physics coupled transport behaviors in multi-scale shale formation is established. The fractal fracture networks are depicted based on the L-system theory with microseismic events (MSE), and embedded into the numerical modeling by an automatic fitting algorithm. As a development from the traditional transport model, the formulas among the pressure field, thermal field, and the molecular diffusion of binary gases are constructed based on the Chapman-Enskog theory. The effect of tortuosity and surface diffusion on gas transport efficiency can reach up to 5 %. The morphology parameters of induced fractures affect gas migration mainly by changing the size of SRV and the space between adjacent induced fractures, with their influence on CH4 production potentially as high as 20 %. Meanwhile, there are improved CH4 production, energy efficiency, and CO2 storage amounts, when the injection parameters are optimized. By optimizing the injection conditions (temperature, pressure), CH4 production can be increased by about 8 %.

Keywords: CO2 sequestration; Enhanced gas recovery; Fractal fracture networks; Multi-physics coupled transport; Microseismic events; Binary gas diffusion (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223026798
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:284:y:2023:i:c:s0360544223026798

DOI: 10.1016/j.energy.2023.129285

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223026798