EconPapers    
Economics at your fingertips  
 

A numerical study of thermal management of lithium-ion battery with nanofluid

Ozge Yetik, Ugur Morali and Tahir Hikmet Karakoc

Energy, 2023, vol. 284, issue C

Abstract: In this study, the NTGK model was used to evaluate the thermal and electrical analyzes of the battery model and Taguchi design was implemented to investigate the main effects of four control factors in the battery thermal management process, those are inlet velocity, mixing ratio, ambient temperature, and C-rate. The Taguchi's L16 array was fabricated using varying control factors to obtain detailed battery temperature behaviors. As the discharge rate increased, the temperature value of the model increased, while the temperature value of the model decreased as the mixing ratio of the nanoparticle increased. As the inlet velocity of the refrigerant increases, the temperature value taken by the model decreases, while the higher the ambient temperature, the less the increase in the maximum temperature reached by the model. Also results showed that the most influential factor on both maximum battery temperature and temperature uniformity responses was the C-rate, while the least effective factor was the mixing ratio. It was found that an inlet velocity of 0.04 m/s, a mixing ratio of 5, a C-rate of 2, and an ambient temperature of 283 K will yield the lowest maximum battery temperature. The maximum battery temperature was 294 K under these conditions. On the other hand, to maximize the temperature uniformity, 0.04 m/s inlet velocity, 3 mixing ratio, 2 C-rate, and 313 K ambient temperature need to be set as processing parameters. The results showed that the C-rate has to be closely controlled during the discharge process and the influence of the mixing ratio is negligible. This study can be used as a robust guideline in the design of battery thermal management systems using nanofluids.

Keywords: Battery thermal model; Maximum battery temperature; Temperature uniformity; Nanofluid; Orthogonal design (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223026890
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:284:y:2023:i:c:s0360544223026890

DOI: 10.1016/j.energy.2023.129295

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223026890