EconPapers    
Economics at your fingertips  
 

Comprehensive performance investigation of a novel solar-assisted liquid air energy storage system with different operating modes in different seasons

Xingqi Ding, Yufei Zhou, Liqiang Duan, Da Li and Nan Zheng

Energy, 2023, vol. 284, issue C

Abstract: Recently, many researchers have put a spotlight on solar-assisted liquid air energy storage (LAES) system for its cleanliness and large storage capacity. However, the energy efficiencies of such systems are relatively low, resulting in poor economic performance. In addition, very few studies are conducted on the performance of such systems with multi-generation output. Thus, a novel solar-assisted LAES system with different operating modes (LAES-S-D) in different seasons is proposed, which fully utilizes the solar heat and air compression heat to supply cooling/heating/power/domestic hot water in different seasons to meet the energy requirements of users in different seasons. The waste heat recovery/utilization potential of the system is analyzed from the perspective of the energy cascade utilization. Energy, exergy, techno-economic and exergoenvironmental performances are deeply investigated. In contrast with the reference system, the energy efficiency is improved from 0.5101 to 0.5561 (transition seasons), 0.7849 (summer) and 0.8674 (winter), respectively. The net present value is improved by 324.63 million $, the levelized cost of energy is reduced by 0.0774 $/kWh and the dynamic payback time is decreased by 4.87 years.

Keywords: Thermodynamic analysis; Techno-economic analysis; Exergoenvironmental analysis; Solar heat; Liquid air energy storage; Waste heat utilization (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223027007
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:284:y:2023:i:c:s0360544223027007

DOI: 10.1016/j.energy.2023.129306

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223027007