Functional classification and dynamic prediction of cumulative intraday returns in crude oil futures
Xuemei Li and
Xiaoxing Liu
Energy, 2023, vol. 284, issue C
Abstract:
Predicting the movement of crude oil futures is crucial for investors to identify opportunities and for the efficient functioning of financial markets. This paper applies functional classification and dynamic prediction (FCDP) to forecast the cumulative intraday returns of INE and Brent crude oil futures for every 5 min, to address the characteristics of high-frequency data and complex change patterns of crude oil futures market. The primary goal of FCDP is to classify trading days with the same volatility pattern employing probabilistic functional classification based on the artificial distinction between the daytime and nighttime trading hours, and then to generate forecasts using the classification results. The robustness test compares the forecasting results of FCDP with ARIMA, OLS and RW methods. According to the findings, FCDP outperforms other methods when it comes to making predictions concerning crude oil futures. Due to the FCDP's incorporation of the concept of dynamic updating, which is not reflected in conventional prediction methods, the prediction error gradually lowers as the amount of seen data increases. INE and Brent crude oil futures market trading patterns at night are more intricate than they are during the day. This study supports flexible trading strategy adjustments for both investors and policymakers.
Keywords: Dynamically updated forecasts; Weighted functional principal component analysis; Cluster pattern recognition; Functional classification and dynamic prediction (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223027494
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:284:y:2023:i:c:s0360544223027494
DOI: 10.1016/j.energy.2023.129355
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().